一陸特無線工学 重要公式集

基礎理論

■ オームの法則

$$I = \frac{V}{R}$$

I:電流〔A〕

V: 電圧 [V]

R:抵抗 $[\Omega]$

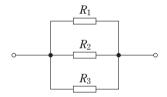
$$\begin{array}{c|c}
R & \stackrel{I}{\longleftarrow} V \\
\hline
 & V \longrightarrow I
\end{array}$$

■ 抵抗の直列接続

$$R_{\rm S} = R_1 + R_2 + R_3$$

 $R_{\rm S}$: 合成抵抗 $[\Omega]$

 R_1 , R_2 , R_3 :抵抗〔 Ω 〕

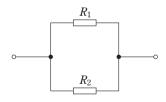

$$R_1$$
 R_2 R_3

■ 抵抗の並列接続

$$\frac{1}{R_{\rm P}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

 $R_{\rm P}$: 合成抵抗 $[\Omega]$

 R_1 , R_2 , R_3 : 抵抗〔 Ω 〕



■ 2個の抵抗の並列接続

$$R_{\rm P} = \frac{R_1 R_2}{R_1 + R_2}$$

 $R_{\rm P}$: 合成抵抗 $[\Omega]$

 R_1 , R_2 :抵抗 (Ω)

■ コンデンサの直列接続

$$\frac{1}{C_{\rm S}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

 C_{S} : 合成静電容量 [F]

 C_1 , C_2 , C_3 : 静電容量 [F]

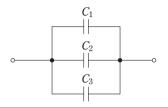
$$C_1$$
 C_2 C_3

■ 2個のコンデンサの直列接続

$$C_{\rm S} = \frac{C_1 C_2}{C_1 + C_2}$$

 $C_{\rm S}$: 合成静電容量 $[{\rm F}]$

 C_1 , C_2 : 静電容量 [F]



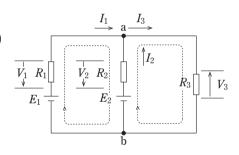
■ コンデンサの並列接続

$$C_P = C_1 + C_2 + C_3$$

 $C_{\rm P}$: 合成静電容量 [F]

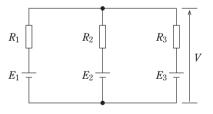
 C_1 , C_2 , C_3 :静電容量 [F]

■ キルヒホッフの法則


第1法則(流入する電流の和と流出する電流の和は等しい)

$$I_1 + I_2 = I_3$$

第2法則(電圧降下の和は起電力の和に等しい)

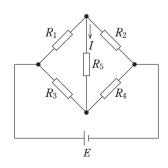

$$V_1 - V_2 = R_1 I_1 - R_2 I_2 = E_1 - E_2$$

$$V_2 + V_3 = R_2 I_2 + R_3 I_3 = E_2$$

■ ミルマンの定理

$$V = \frac{\frac{E_1}{R_1} + \frac{E_2}{R_2} + \frac{E_3}{R_3}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}} (V)$$

電圧源 E_1 , E_2 , E_3 [V] と抵抗 R_1 , R_2 , R_3 [Ω] の直列回路が並列に接続された回路の端子電圧V [V]


■ ブリッジ回路

回路が平衡して電流I=0となる条件

$$R_1R_4 = R_2R_3$$

または

$$\frac{R_1}{R_2} = \frac{R_3}{R_4}$$

電力P(W)

$$P = IV$$

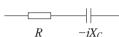
$$=I^2R=\frac{V^2}{R}$$

V:電圧(V)

I:電流 [A]

R:抵抗[Ω]

抵抗RとコイルのリアクタンスX」の直列回路の合成インピーダンスZ[Ω]


$$\dot{Z} = R + iX_1$$

$$\dot{Z}$$
= $R+jX_{\mathrm{L}}$ その大きさ $|\dot{Z}|=\sqrt{R^2+X_{\mathrm{L}}^2}$

抵抗Rとコンデンサのリアクタンス $X_{\mathbb{C}}$ の直列回路の合成インピーダンスZ (Ω)

$$\dot{Z} = R - iX_C$$

$$\dot{Z}=R-jX_{\mathrm{C}}$$
 その大きさ $|\dot{Z}|=\sqrt{R^2+X_{\mathrm{C}}^2}$

· Z: 直列回路の合成インピーダンス [Ω]

R:抵抗 [Ω]

 X_L : コイルのリアクタンス $(X_L = \omega L = 2\pi f L)$ $[\Omega]$

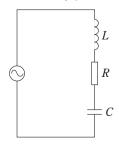
$$X_{\mathbb{C}}$$
: コンデンサのリアクタンス $\left(X_{\mathbb{C}} = \frac{1}{\omega C} = \frac{1}{2\pi fC}\right) (\Omega)$

- 抵抗Rとコイルのリアクタンス X_I の並列回路の合成電流I(A) $I^2 = I_R^2 + I_L^2$
- 抵抗Rとコンデンサのリアクタンス X_C の並列回路の合成電流I(A)

$$I^2 = I_R^2 + I_C^2$$

 I_R : 抵抗R に流れる交流電流 [A]

 I_L : コイル L に流れる交流電流 [A]


 $I_{\mathbb{C}}$: コンデンサ C に流れる交流電流 [A]

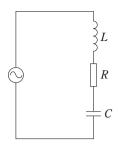
抵抗R, コイルL, コンデンサCの直列共振回路の共振周波数 f_0 [Hz]

$$f_0 = \frac{1}{2 \pi \sqrt{LC}}$$

 f_0 : 共振周波数 [Hz]

C:コンデンサの静電容量 [F]

直列共振回路の Q


$$Q = \frac{\omega_0 L}{R}$$

$$Q = \frac{\omega_0 L}{R} \qquad Q = \frac{1}{\omega_0 CR}$$

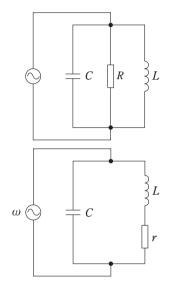
$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

 $ω_0 = 2\pi f_0$: 共振角周波数 [rad/s]

R: 直列抵抗〔 Ω 〕

並列共振回路の Q

$$Q = \frac{R}{\omega_0 L}$$
 $Q = \omega_0 CR$


$$Q = \omega_0 CR$$

R: 並列抵抗 $[\Omega]$

$$Q = \omega_0 C r$$

r: コイルの直列 (実効) 抵抗 [Ω]

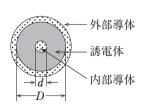
ω0: 共振角周波数

平行二線式給電線の特性インピーダンス Z_0 (Ω)

$$Z_0 = 277 \log_{10} \frac{2D}{d}$$

d:給電線の導線の直径 [mm]

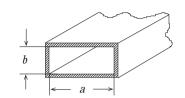
D: 二線間の距離 [mm]


同軸ケーブルの特性インピーダンス Z_0 (Ω)

$$Z_0 = \frac{138}{\sqrt{\varepsilon_s}} \log_{10} \frac{D}{d}$$

ες: 誘電体の比誘電率

d:内部導体の外径 [mm]


D:外部導体の内径 [mm]

■ TE₁₀ 波の導波管の遮断波長 λ。(m)

$$\lambda_{\rm c} = 2a$$

a: 導波管の長辺の長さ [m]

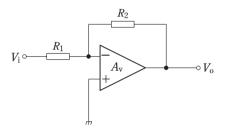
TE₁₀ 波の導波管の遮断周波数 f_c [Hz]

$$f_{\rm c} = \frac{3 \times 10^8}{2a}$$

a: 導波管の長辺の長さ [m]

反転形電圧増幅器の電圧増幅度A_v

$$A_{\rm v} = \frac{V_{\rm o}}{V_{\rm i}} = -\frac{R_2}{R_1}$$

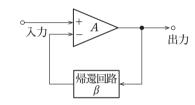

 $A_{\rm v} = \frac{V_{\rm o}}{V_{\rm i}} = -\frac{R_{\rm 2}}{R_{\rm 1}}$ | $A_{\rm v} \mid = \frac{R_{\rm 2}}{R_{\rm 1}}$ (大きさ)

 V_i :入力電圧[V]

V_o:出力電圧 (V)

 R_1 :入力抵抗 $[\Omega]$

 R_2 : 帰還抵抗 $[\Omega]$

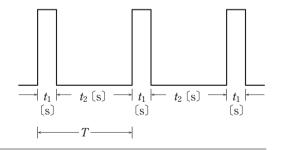


負帰還増幅器の電圧増幅度Af

$$A_f = \frac{A}{1 + A\beta}$$

A:負帰還をかけないときの電圧増幅度

β:帰還率


パルス繰り返し周波数*f* (Hz)

$$f = \frac{1}{T} = \frac{1}{t_1 + t_2}$$

T:繰り返し周期 [s]

 t_1 :パルスの幅 [s]

 t_2 :パルスの間隔 [s]

衝撃係数 (デューティファクタ) D

$$D = \frac{t_1}{T} = \frac{t_1}{t_1 + t_2}$$

T:繰り返し周期 [s]

 t_1 :パルスの幅 [s]

 t_2 :パルスの間隔 [s]

多重変調方式

■ 標本化定理における最高周波数 fm (Hz)

$$f_{\rm m} = \frac{f}{2}$$

f: 標本化周波数 [Hz]

■ 標本化定理における最高周波数の下限の値 f (Hz)

$$f = 2f_{\rm m}$$

fm:最高周波数 [Hz]

■ PCM伝送回路における伝送可能な最大チャネル数N

$$N = \frac{B}{D}$$

B: 伝送速度 [bps]

D:データ速度 [bps]

■ OFDM のキャリア間隔 (基本周波数) f (Hz)

$$f = \frac{1}{T}$$

T: 有効シンボル期間長 (変調シンボル長) [s]

■ OFDM の有効シンボル期間長(変調シンボル長) T (s)

$$T = \frac{1}{f}$$

f: キャリア間隔 (基本周波数) [Hz]

無線送受信装置

■ FM電波の占有周波数帯幅B(Hz)

 $B = 2 \ (\Delta f + f_{\rm P}) = 2f_{\rm P} \ (m_f + 1)$

 Δf : 最大周波数偏移 [Hz] f_P : 最高変調周波数 [Hz]

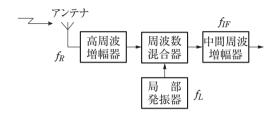
4

 m_f :変調指数 $m_f = \frac{\Delta f}{f_P}$

■ スーパヘテロダイン受信機の影像周波数 f₁ [Hz]

 $f_{\rm L} > f_{\rm R}$ の場合 $(f_{\rm IF} = f_{\rm L} - f_{\rm R})$

$$f_{\rm I} = f_{\rm R} + 2f_{\rm IF} = f_{\rm L} + f_{\rm IF}$$


 $f_{\rm L} < f_{\rm R}$ の場合 $(f_{\rm IF} = f_{\rm R} - f_{\rm L})$

$$f_{\rm I} = f_{\rm R} - 2f_{\rm IF} = f_{\rm L} - f_{\rm IF}$$

 f_{R} : 受信周波数 [Hz]

f_{IF}:中間周波数〔Hz〕

 $f_{\rm L}$:局部発振周波数 $[{\rm Hz}]$

■ 等価雑音電力 N (W)

N = kTBF

k: ボルツマン定数:1.38×10⁻²³ [J/K]

T: 絶対温度 [K]: T=273+周囲温度 [℃]

B: 帯域幅 [Hz]

F: 雜音指数

■ 雑音指数 F (W)

$$F = 1 + \frac{T_e}{T_0}$$

 $T_{\rm e}$:等価雑音温度〔K〕

 T_0 :周囲温度 [K]

 $T_0: (\mathbb{K}) = T_0 (^{\circ}\mathbb{C}) + 273$

■ 等価雑音温度 T_e (K)

$$T_{\rm e} = (F-1)T$$

T:周囲温度 [K]

F: 雜音指数 (真数)

■ 多段増幅器の雑音指数F

$$F = F_1 + \frac{F_2 - 1}{G_1}$$

F1: 初段の増幅器の雑音指数 (真数)

F2:2段目の増幅器の雑音指数(真数)

G1: 初段の増幅器の有効利得 (真数)

■ 多段増幅器の等価雑音温度 T。(K)

$$T_{\rm e} = T_1 + \frac{T_2}{G_1}$$

T1: 初段の増幅器の雑音温度 (真数)

T2:2段目の増幅器の雑音温度(真数)

G1: 初段の増幅器の有効利得(真数)

レーダー

■ パルスレーダー送信機のパルス繰り返し周期 T (s)

$$T = \frac{1}{f}$$

f: パルス繰り返し周波数 [Hz]

■ パルスレーダー送信機の物標までの距離r(m)

$$r = \frac{ct}{2}$$

c:電波の速度 [m/s]

t: 電波の物標までの往復時間 [s]

■ パルスレーダー送信機のせん頭電力P₁(W)

$$P_{\rm t} = \frac{P_{\rm m}T}{\tau} = \frac{P_{\rm m}}{f\tau}$$

 $P_{\rm m}$: 平均電力 [W]

T: パルス繰り返し周期 [s]

τ: パルス幅 [s]

■ パルスレーダー送信機の平均電力P_m(W)

$$P_{\rm m} = \frac{P_{\rm t} \tau}{T}$$

P_t: せん頭電力 [W]

T: パルス繰り返し周期 [s]

τ: パルス幅 [s]

■ パルスレーダー送信機の最小探知距離 R [m]

$$R = 150 \tau$$

τ:パルス幅 [s]

距離分解能R[m]の場合も同じ

■ ドプラ周波数 fd [Hz]

$$f_{\rm d} = \frac{2vf}{c}$$

v:移動体の速度 [m/s]

f:周波数[Hz]

c:電波の速度 (=3×10⁸ [m/s])

■ 電波の波長 λ (m) と周波数 f (Hz) の関係

$$\lambda = \frac{3 \times 10^8}{f}$$

周波数fの単位をMHzとすれば、

$$\lambda = \frac{300}{f(\text{MHz})}$$

■ 半波長ダイポールアンテナの実効長 he (m)

$$h_{\rm e} = \frac{\lambda}{\pi}$$

λ:電波の波長 [m]

■ 1/4 波長垂直接地アンテナの実効長 h_e (m)

$$h_{\rm e} = \frac{\lambda}{2\pi}$$

λ:電波の波長 [m]

■ ブラウンアンテナの放射素子の長さ l (m)

$$l = \frac{\lambda}{4}$$

λ:電波の波長 [m]

■ スリーブアンテナの放射素子の長さ l (m)

$$l = \frac{\lambda}{4}$$

λ:電波の波長 [m]

■ アンテナ (空中線) の利得

供試アンテナまたは基準アンテナに異なる電力を加えて、同一場所におけるそれ ぞれの電界強度を同じにした場合

$$G_{\text{dB}} = 10 \log_{10} \frac{P_0}{P}$$
 — $10 \log_{10}$ であることに注意

*G*_{dB}: アンテナの利得 [dB]

P: 供試アンテナに加える電力 [W] P_0 : 基準アンテナに加える電力 [W]

供試アンテナまたは基準アンテナに同一の電力を加えて、同一場所におけるそれ ぞれの電界強度を比較した場合

$$G_{ ext{dB}} = 20 \log_{10} \frac{E}{E_0}$$
 — $20 \log_{10}$ であることに注意

*G*_{dB}: アンテナの利得 [dB]

E: 供試アンテナの電界強度 [V/m] E_0 : 基準アンテナの電界強度 [V/m]

■ 絶対利得 G_a (dB)

$$G_{\rm a} = G_{\rm r} + 2.15$$

*G*_r: 相対利得 [dB]

■ 相対利得 G_r (dB)

$$G_{\rm r}=G_{\rm a}-2.15$$

Ga: 絶対利得 [dB]

■ パラボラアンテナのビーム幅 *θ* (°)

$$\theta = 70 \frac{\lambda}{D}$$

λ: 使用電波の波長 [m]

D: 開口面の直径 [m]

■ 電圧定在波比VSWR

$$VSWR = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$

Γ:電圧反射係数

電波伝搬

■ 自由空間電界強度 E (V/m)

$$E = \frac{7\sqrt{G_a P}}{d}$$

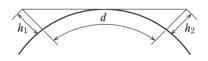
Ga: アンテナの相対利得[倍]

P: アンテナの放射電力 [W]

d:アンテナからの距離 [m]

■ 自由空間基本伝送損失 \(\Gamma_0\)

$$\Gamma_0 = \left(\frac{4\pi d}{\lambda}\right)^2$$


d:アンテナからの距離 [m]

λ:波長 [m]

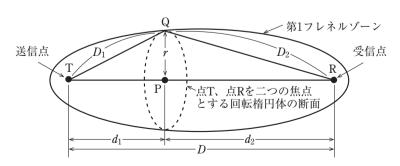
■ 電波の見通し距離 d (km) (大気がない場合)

$$d = 3.57 \left(\sqrt{h_1} + \sqrt{h_2} \right)$$

 h_1 , h_2 : 送信, 受信アンテナの地上高 [m]

■ 電波の見通し距離 d (km) (標準大気中の場合)

$$d = 3.57 \sqrt{K} (\sqrt{h_1} + \sqrt{h_2}) = 4.12 (\sqrt{h_1} + \sqrt{h_2})$$


 h_1 , h_2 : 送信, 受信アンテナの地上高 [m]

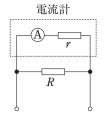
K: 地球の等価半径係数 $\left(=\frac{4}{3}\right)$

■ 第1フレネルゾーンの *r* の距離 [m]

$$r = \sqrt{\lambda \frac{d_1 d_2}{(d_1 + d_2)}}$$

λ:電波の波長 [m]

測定

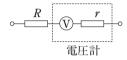

電流計の分流器 $R(\Omega)$

$$R = \frac{r}{n-1} \qquad n = \frac{r}{R} + 1$$

$$n=\frac{r}{R}+1$$

n: 測定倍率 [倍]

r: 電流計の内部抵抗 $[\Omega]$


電圧計の倍率器 $R(\Omega)$

$$R = (n-1)r$$

$$R = (n-1)r \qquad n = \frac{R}{r} + 1$$

n: 測定倍率 [倍]

r: 電圧計の内部抵抗 $[\Omega]$

電圧の実効値 Ve (V)

$$V_{\rm e} = \frac{V_{\rm m}}{\sqrt{2}}$$

V_m:電圧の最大値 [V]

数学の公式等

指数の計算

$$X^{\mathrm{m}} \times X^{\mathrm{n}} = X^{\mathrm{m+n}}$$

$$X^{\mathrm{m}} \div X^{\mathrm{n}} = \frac{X^{\mathrm{m}}}{X^{\mathrm{n}}} = X^{\mathrm{m-n}}$$

$$\frac{1}{X^n} = X^{-n}$$

$$X^0 = 1$$

√とπの数値

X	1	2	3	5	4	16	10	100
\sqrt{X}	1	1.4	1.7	2.2	2	4	3	10

$$\pi = 3$$
 $\frac{1}{\pi} = 0.3$ $\frac{1}{2\pi} = 0.16$ $\frac{1}{\sqrt{2}} = 0.7$

log

$$\log_{10}(a \times b) = \log_{10}a + \log_{10}b$$

$$\log_{10} a^{\mathrm{b}} = b \times \log_{10} a$$

$$\log_{10} \frac{a}{b} = \log_{10} a - \log_{10} b$$

X	1/2	1	2	3	4	5	10	20	100
$\log_{10}X$	-0.3	0	0.3	0.48	0.6	0.7	1	1.3	2

デシベル

電力比のデシベル
$$G_{\mathrm{dB}} = 10 \log_{10} G$$
 (dB)

電圧比のデシベル
$$A_{\mathrm{dB}} = 20 \log_{10} A_{\mathrm{V}}$$
 [dB]

比	1/2	1	2	3	4	5	10	20	100
電力	-3	0	3	4.8	6	7	10	13	20
電圧	-6	0	6	9.6	12	14	20	26	40

■ 三平方の定理

$$r^2 = a^2 + b^2$$
$$r = \sqrt{a^2 + b^2}$$

■ 単位の接頭語

名称	テラ		メガ (メグ)		センチ	ミリ	マイクロ	ナノ	ピコ
記号	Т	G	M	k	С	m	μ	n	р
数值	10^{12}	10 ⁹	10^{6}	10^{3}	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}