1アマ無線工学 重要公式集

電気物理

■ クーロンの法則

$$F = \frac{Q_1 Q_2}{4 \pi \varepsilon_0 r^2} = K \frac{Q_1 Q_2}{r^2} = 9 \times 10^9 \times \frac{Q_1 Q_2}{r^2}$$

F:電荷に働く力 [N]

K:真空(≒空気)の比例定数

ε₀: 真空の誘電率 [F / m]

Q₁, Q₂: 点電荷の電気量〔C〕

 $r:Q_1,Q_2$ 間の距離 [m]

$$F \stackrel{+Q_1}{\longleftarrow} F \stackrel{+Q_2}{\longleftarrow} F$$

■ 磁気に関するクーロンの法則

$$F = \frac{m_1 m_2}{4 \pi \mu_0 r^2}$$

F:二つの磁極間に働く力〔N〕

μ₀: 真空中の透磁率 [H / m]

σ=-バー

m₁, m₂: 二つの磁極の強さ [W b]

r:二つの磁極間の距離 [m]

$$F \stackrel{m_1}{\longleftarrow} F \stackrel{m_2}{\longleftarrow} F$$

■ 電界の強さ*E*〔*V*/m〕

$$E = \frac{Q}{4\pi\epsilon_0 r^2} = K \frac{Q}{r^2} = 9 \times 10^9 \times \frac{Q}{r^2}$$

Q:点電荷の電気量 [C]

ε₀: 真空の誘電率 [F/m]

r: 点電荷からの距離 [m]

$$\begin{array}{ccc}
+Q & & & & & \\
0 & & & & & \\
|\longleftarrow & & & & \\
r & & & & \\
\end{array}$$

lack 均一な電界中の電荷に働く力F (N)

F = QE

F: 電荷に働く力 [N]

Q: 点電荷〔C〕

E: 電界 [V/m]

均一な電界中の電位差V(V)

V = Er

E:電界[V/m]

r:2点間の距離「m]

■ 磁界の強さH [A/m]

$$H = \frac{m}{4\pi\mu_0 r^2}$$

μ₀: 真空中の透磁率 [H/m]

m:磁界の強さ [Wb]

r:磁極からの距離 [m]

■ 磁束密度B (Wb/m²)

$$B = \frac{m}{4\pi r^2} = \mu_0 H$$

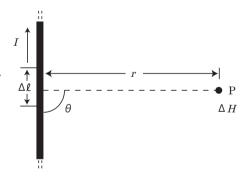
μ₀: 真空中の透磁率 [H/m]

m:磁極の強さ [Wb]

r:磁極からの距離 [m]

H: 磁界の強さ [A / m]

■ ビオ・サバールの法則


導線の微小部分△ℓ〔m〕を流れる

電流 I [A] によって $\Delta \ell$ となす角が θ で、

r [m] の距離にある点に生じる磁界 ΔH [A/m] は、

$$\Delta H = \frac{I\Delta \ell}{4\pi r^2} \times \sin \theta$$

$$\sin 90^\circ = 1 \quad \sin 45^\circ = \frac{1}{\sqrt{2}}$$

■ コンデンサに蓄えられる電荷Q (C)

$$Q = CV$$

 C: コンデンサの静電容量〔F〕

 V: コンデンサに加わる電圧〔V〕

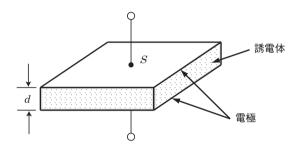
$$\begin{array}{c|c} +Q & \\ \hline C & \\ -Q & \\ \end{array} \stackrel{T}{\longrightarrow} V$$

\blacksquare コンデンサの静電容量C (F)

$$C = \varepsilon \frac{S}{d}$$

 $\varepsilon = \varepsilon_{\rm S} \, \varepsilon_{\rm 0}$

C:コンデンサの静電容量 [F]


d:電極間の距離〔m〕

S:電極の面積 [m²]

ε:電極間の誘電率 [F/m]

ε_S:誘電体の比誘電率

 ϵ_0 :真空中の誘電率 [F/m]

■ コンデンサの直列接続

$$\frac{1}{C_{\rm S}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

 C_S : 合成静電容量 [F]

 C_1, C_2, C_3 : 静電容量〔F〕

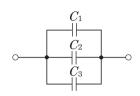
$$\begin{array}{c|cc} C_1 & C_2 & C_3 \\ \hline \bigcirc & | & | & | & | & \hline \end{array}$$

■ 二つのコンデンサの直列接続

$$C_{\rm S} = \frac{C_1 C_2}{C_1 + C_2}$$

 C_S : 合成静電容量 [F]

 C_1 , C_2 :静電容量〔F〕


$$C_1$$
 C_2 \bigcirc $|$ $|$ $|$ \bigcirc

■ コンデンサの並列接続

$$C_{\rm P} = C_1 + C_2 + C_3$$

 C_P: 合成静電容量〔F〕

 C₁. C₂. C₃: 静電容量〔F〕

$lacksymbol{\blacksquare}$ コンデンサに蓄えられるエネルギーW $\left(f{J} ight)$

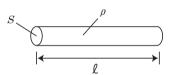
$$W = \frac{1}{2} QV = \frac{1}{2} CV^2 = \frac{1}{2} \times \frac{Q^2}{C}$$

V: コンデンサに加えられる電圧 [V]

Q:コンデンサに蓄えられる電荷の電気量 [C]

C: コンデンサの静電容量 [F]

■ 導体の抵抗*R*〔Ω〕


$$R = \rho \, \frac{\ell}{S}$$

R: 導体の抵抗 [Ω]

ℓ:導体の長さ [m]

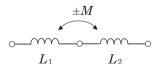
S: 導体の断面積〔 m^2 〕

 $^{ extsf{\tiny II-}}_{
ho}$:導体の抵抗率〔 $\Omega\cdot extsf{\tiny m}$ 〕


lacksquare 二つのコイルの直列接続のときの合成インダクタンスL $\left(\mathbf{H} \right)$

二つのコイル間に電磁結合のない場合

$$L = L_1 + L_2$$


L: コイルの合成インダクタンス[H]

 L_1, L_2 : \mathcal{L}_1 : \mathcal{L}_2 : \mathcal{L}_2 : \mathcal{L}_3 : \mathcal{L}_4 : \mathcal{L}_4 : \mathcal{L}_5 : $\mathcal{$

二つのコイルの磁束が加わる場合(和動接続)

$$L = L_1 + L_2 + 2M$$

二つのコイルの磁束が打ち消し合う場合 (差動接続)

$$L = L_1 + L_2 - 2M$$

 L_1, L_2 : \mathcal{E}_1 : \mathcal{E}_2 : \mathcal{E}_1 : \mathcal{E}_2 : \mathcal{E}_3 : \mathcal{E}_4 : \mathcal{E}_4 : \mathcal{E}_4 : \mathcal{E}_4 : \mathcal{E}_4 : \mathcal{E}_5 : \mathcal{E}_5 : \mathcal{E}_6 : \mathcal{E}_7 : $\mathcal{$

 $M: L_1, L_2$ 間の相互インダクタンス [H]

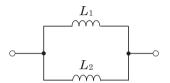
■ コイルの間の結合係数k

$$k = \frac{M}{\sqrt{L_1 L_2}}$$

k:二つのコイル間の結合係数

 L_1, L_2 : \mathcal{L}_1 \mathcal{L}_2 : \mathcal{L}_2 : \mathcal{L}_1 \mathcal{L}_2 : \mathcal{L}_3

 $M: L_1, L_2$ 間の相互インダクタンス〔H〕


\blacksquare 二つのコイルの並列接続のときの合成インダクタンスL [H]

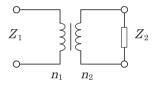
二つのコイル間に電磁結合のない場合

$$L = \frac{L_1 L_2}{L_1 + L_2}$$

L: コイルの合成インダクタンス [H]

 L_1, L_2 : それぞれのコイルのインダクタンス〔H〕

■ 結合用変成器の入力インピーダンス

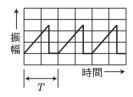

$$Z_1 = \left(\frac{n_1}{n_2}\right)^2 Z_2$$

 Z_1 :一次側のインピーダンス〔 Ω 〕

 Z_2 :二次側に接続したインピーダンス〔 Ω 〕

n1:一次側の変成器の巻線の数〔回〕

n2: 二次側の変成器の巻線の数 [回]



■ パルスの繰り返し周波数 f (Hz)

$$f = \frac{1}{T}$$

f:パルスの繰り返し周波数〔Hz〕

T:パルスの繰り返し周期〔秒〕

電気回路

■ オームの法則

$$I = \frac{V}{R}$$

I:電流〔A〕

V:電圧 [V]

R:抵抗〔Ω〕

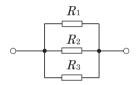
$$V \overline{\bigsqcup_{}} \quad \bigcup_{} \stackrel{\downarrow}{R} R$$

■ 抵抗の直列接続

$$R_{\rm S} = R_1 + R_2 + R_3$$

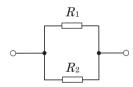
 R_{S} : 合成抵抗〔 Ω 〕

 R_1 , R_2 , R_3 :抵抗〔Ω〕


$$R_1$$
 R_2 R_3

■ 抵抗の並列接続

$$\frac{1}{R_{\rm P}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$


 R_P : 合成抵抗〔 Ω 〕

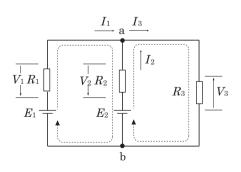
 R_1 , R_2 , R_3 :抵抗〔Ω〕

■ 二つの抵抗の並列接続

$$R_{\rm P} = \frac{R_1 R_2}{R_1 + R_2}$$

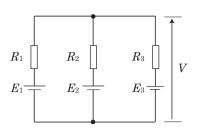
■ キルヒホッフの法則

第1法則(流入電流の和と流出電流の和は等しい) $I_1+I_2=I_3$


第2法則(電圧降下の和は起電力の和に等しい)

$$V_1 - V_2 =$$

$$R_1 I_1 - R_2 I_2 = E_1 - E_2$$


$$V_2 + V_3 =$$

$$R_2 I_2 + R_3 I_3 = E_2$$

■ ミルマンの定理

$$V = \frac{\frac{E_1}{R_1} + \frac{E_2}{R_2} + \frac{E_3}{R_3}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}} \quad (V)$$

電圧源 E_1 , E_2 , E_3 〔V〕と抵抗 R_1 , R_2 , R_3 〔 Ω 〕の直列回路が並列に接続された回路の 端子電圧 V 〔V〕

- 抵抗Rとコイルのリアクタンス $X_{\rm L}$ の直列回路の合成インピーダンス \dot{Z} Ω \dot{Z} $= R + jX_{\rm L}$ その大きさ \dot{Z} $= \sqrt{R^2 + X_{\rm L}^2}$ -
- 抵抗Rとコンデンサのリアクタンス $X_{\rm C}$ の直列回路の合成インピーダンス \dot{Z} Ω \dot{Z} $= R j X_{\rm C}$ その大きさ \dot{Z} $= \sqrt{R^2 + X_{\rm C}^2}$ $R j X_{\rm C}$

Z: 直列回路の合成インピーダンス $[\Omega]$

R:抵抗〔 Ω 〕

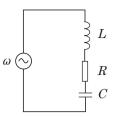
 $X_{\rm L}$: コイルのリアクタンス $(X_{\rm L}$ = ωL = $2\pi f L$) $[\Omega]$

 $X_{\rm C}$: コイルのリアクタンス ($X_{\rm C} = \frac{1}{\omega C} = \frac{1}{2\pi fC}$) [Ω]

- 抵抗Rとコイルのリアクタンス $X_{
 m L}$ の並列回路の合成電流I〔A〕 $I=\sqrt{I_{
 m R}^2+I_{
 m L}^2}$
- 抵抗Rとコンデンサのリアクタンス X_{C} の並列回路の合成電流I〔A〕 $I=\sqrt{I_{\mathrm{R}^2}+I_{\mathrm{C}^2}}$

 I_R : 抵抗 Rに流れる交流電流 [A]

 I_L :コイルLに流れる交流電流 [A]


 $I_{\mathbb{C}}$: コンデンサCに流れる交流電流 [A]

\blacksquare 抵抗R、コイルL、コンデンサCの直列回路の合成インピーダンスZ〔 Ω 〕

$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

R:抵抗〔 Ω 〕

 $\frac{1}{\omega C} = \frac{1}{2\pi fC}$: ביל יום און ביל יום אינים ווים ביל יום ביל יום אינים ווים ביל יום ביל י

■ 抵抗R、コイルL、コンデンサCの直列共振回路の共振周波数 f_{r} 〔 Hz 〕

$$f_{\rm r} = \frac{1}{2\pi\sqrt{LC}}$$

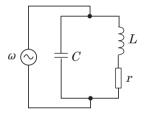
fr: 共振周波数 [Hz]

L: \exists T T

C:コンデンサの静電容量 [F]

\blacksquare コイルLとコンデンサCの並列共振回路の共振したときのインピーダンスZ [Ω]

$$Z=rac{L}{Cr}$$
 最大となる


共振周波数 f_r [Hz] は、

$$f_{\rm r} = \frac{1}{2 \pi \sqrt{LC}}$$

 $f_{\rm r}$: 共振周波数〔Hz〕

r:コイルの直列(実効)抵抗〔 Ω 〕

C:コンデンサの静電容量 [F]

■ 直列共振回路のQ

$$Q = \frac{\omega_{\rm r} L}{R}$$

$$Q = \frac{1}{\omega_r CR}$$

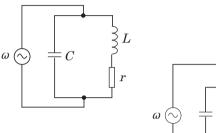
$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

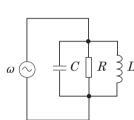
ω_r = 2π f_r: 共振角周波数 [rad/s]

R: 直列抵抗〔 Ω 〕

■ 並列共振回路のQ

$$Q = \frac{R}{\omega_{\rm r} L}$$


$$Q = \omega_{\rm r} C R$$


R:並列抵抗〔 Ω 〕

$$Q = \frac{\omega_{\rm r} L}{r}$$

$$Q = \frac{1}{\omega_{\rm r} C r}$$

r: コイルの直列(実効)抵抗[Ω]

■ 直列共振回路の各部の電圧

$$V_{\rm L} = V_{\rm C} = QV$$

 $V_{
m L}$:コイルの両端の交流電圧〔 ${
m V}$ 〕

 $V_{\rm C}$:コンデンサの両端の交流電圧 [V]

Q:回路の良さ

V:回路に加える交流電圧 [V]

■ 誘導結合回路の出力電圧

 $e_2 = \omega Mi$

e2:二次コイルの端子の交流出力電圧 [V]

ω:一次コイルの端子に加える交流の角周波数 [rad/s]

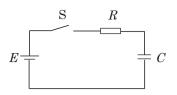
M: 一次、二次コイル間の相互インダクタンス[H]

i:一次コイルに流れる交流電流 [A]

■ C-R 回路の過渡現象

$$i = \frac{E}{R} e^{-t/T} \quad (A)$$

i : 時間とともに変化する電流 [A]

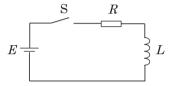

E:起電力[V]

R:抵抗〔 Ω 〕

e: 自然対数の底 (e = 2.718…)

T:時定数 [s] (T=CR)

C: 静電容量 [F]



■ L-R 回路の過渡現象

$$i = \frac{E}{R} (1 - e^{-t/T})$$
 (A)

T: 時定数〔s〕 $(T = \frac{L}{R})$

 $L: A \vee \emptyset \wedge \emptyset \vee X$ [H]

■ 電力P(W)

$$P = VI$$

$$= \frac{V^2}{R}$$

 $=I^2R$

V: 電圧〔V〕

I:電流〔A〕

R:抵抗〔 Ω 〕

電子回路

■ エミッタ接地電流増幅率βとベース接地電流増幅率αとの関係

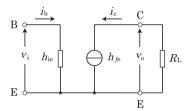
$$\beta = \frac{\alpha}{1 - \alpha}$$

■ エミッタ接地電流増幅率*β* (=*h*_{FE})

$$\beta = \frac{\Delta I_{\rm C}}{\Delta I_{\rm B}}$$

 $\Delta I_{
m C}$:コレクタ電流の変化分〔A〕

 $\Delta I_{\rm B}$: ベース電流の変化分〔A〕


■ エミッタ接地増幅器の電圧増幅度*A*

$$A = -\frac{h_{\rm fe}R_{
m L}}{h_{
m ie}}$$

 h_{ie} :入力インピーダンス〔Ω〕

 h_{fe} :電流増幅率

 R_L :負荷抵抗〔 Ω 〕

B:ベース

C:コレクタ E:エミッタ

*i*_b:ベース電流

*i*_c:コレクタ電流 *v*_i:入力電流

v。: 出力電流

■ エミッタ接地増幅器の電力増幅度A_P

$$A_{\mathrm{P}} = \frac{h_{\mathrm{fe}}^2 R_{\mathrm{L}}}{h_{\mathrm{ie}}}$$

 h_{ie} :入力インピーダンス〔 Ω 〕

 h_{fe} :電流増幅率

 R_{L} :負荷抵抗〔 Ω 〕

■ 低周波増幅器のひずみ率K〔%〕

$$K = \frac{\sqrt{V_2^2 + V_3^2 + \dots + V_n^2}}{V_1} \times 100$$

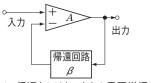
V1:基本波の電圧(実効値)[V]

V2:第2高調波の電圧(実効値)[V]

V3:第3高調波の電圧(実効値)[V]

 V_n : 第 n 高調波の電圧(実効値) [V]

■ 負帰還増幅器の電圧増幅度A_F

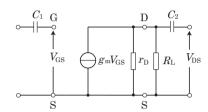

$$A_{\rm F} = \frac{A}{1 - A\beta}$$

一般に β は-の符号を持つので、

$$A_{\rm F} = \frac{A}{1 + A\beta}$$

A:負帰還を掛けないときの電圧増幅度

β:帰還率


β: 帰還率

■ FETの相互コンダクタンス g_{m} $\left[\begin{array}{c} \ddot{\mathbf{S}} \\ \mathbf{S} \end{array} \right]$

 $\Delta I_{\rm D}$:ドレイン電流の微小変化 [A]

 ΔV_{GS} : ゲート・ソース間の電圧の微小変化 [V]

G : ゲート

D:ドレイン

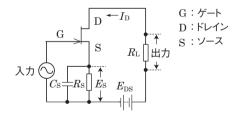
 $\stackrel{\sim}{V_{
m GS}}$:入力交流電圧 $V_{
m DS}$:出力交流電圧

ミュー

■ FETの電圧増幅率 μ

$$\mu = \frac{\varDelta V_{\rm DS}}{\varDelta V_{\rm GS}}$$

 $\Delta V_{
m DS}$:ドレイン・ソース間の電圧の微小変化〔m V〕


 ΔV_{GS} :ゲート・ソース間の電圧の微小変化 [V]

■ FETのドレイン・コンダクタンス g_d (S)

$$g_{\rm d} = \frac{\Delta I_{\rm D}}{\Delta V_{\rm DS}}$$

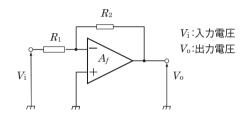
 ΔI_D : ドレイン電流の微小変化 [A]

 $\Delta V_{\rm DS}$: ドレイン・ソース間の電圧の微小変化 [V]

■ FETのソース接地増幅回路の電圧増幅度Av

$$A_{\mathrm{V}} = g_{\mathrm{m}} \, \frac{r_{\mathrm{d}} R_{\mathrm{L}}}{r_{\mathrm{d}} + R_{\mathrm{L}}}$$

ただし、電圧の向きを考えると - (マイナス)となる。


 $g_{\rm m}$:相互コンダクタンス [S]

 r_{d} :ドレイン(出力)抵抗〔 Ω 〕

 $R_{\rm L}$: 負荷抵抗〔 Ω 〕

■ 反転形電圧増幅器の電圧増幅度A_f

$$A_f = \frac{R_2}{R_1}$$

■ 基本論理回路

$$A \longrightarrow M \qquad M = \overline{A}$$
NOT

$$\begin{array}{c|c} A & M \\ \hline 0 & 1 \\ \hline 1 & 0 \\ \end{array}$$

$$\begin{array}{ccc}
A & & \\
B & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$

A	В	M
0	0	0
0	1	0
1	0	0
1	1	1

$$\begin{array}{ccc}
A & & \\
B & & \\
OR & & \\
\end{array}$$
OR

$$\begin{array}{c|cccc} A & B & M \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 1 \\ \end{array}$$

$$\begin{array}{ccc}
A & & \\
B & & \\
NAND
\end{array}$$
NAND

$$\begin{array}{c|cccc} A & B & M \\ \hline 0 & 0 & 1 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 0 \\ \end{array}$$

$$\begin{array}{ccc}
A & & \\
B & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$

A	B	M
0	0	1
0	1	0
1	0	0
1	1	0

送 信 機

■ FM電波の占有周波数帯域幅B_n〔Hz〕

$$B_{\rm n} = 2 (f_{\rm S} + D)$$

 f_{S} :最高変調周波数 [Hz]

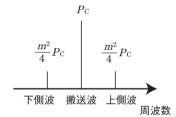
D:最大周波数偏移〔Hz〕

■ 振幅変調波電圧の実効値V_{AM}(V)

$$V_{\rm AM} = V_{\rm C} \sqrt{1 + \frac{m^2}{2}}$$

V_C:搬送波電圧の実効値〔V〕

m:変調度


■ 振幅変調波の電力 P_{AM} (W)

$$P_{\rm AM} = P_{\rm C} \left(1 + \frac{m^2}{2} \right)$$

P_{AM}:振幅変調された振幅変調波の電力 [W]

Pc:搬送波電力 [W]

m:変調度

■ RTTYの通信速度b(ボー)

$$b = \frac{1}{\ell}$$

ℓ:1単位の符号の長さ〔秒〕

受 信 機

■ 受信機の総合利得*G*〔dB〕

$$G = 10\log_{10} \frac{P_{\rm O}}{P_{\rm I}}$$

PI 增幅器 Po

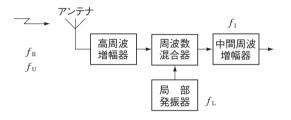
 Po: 出力電力 (W)

 P_I: 入力電力 (W)

■ スーパヘテロダイン受信機の影像周波数 fu (Hz)

 $f_L > f_R$ の場合($f_I = f_L - f_R$)

 $f_{\rm U} = f_{\rm R} + 2f_{\rm I} = f_{\rm L} + f_{\rm I}$


 $f_L < f_R$ の場合($f_I = f_R - f_L$)

 $f_{\rm U} = f_{\rm R} - 2f_{\rm I} = f_{\rm L} - f_{\rm I}$

 $f_{\rm R}$:受信周波数〔Hz〕

 $f_{\rm I}$:中間周波数〔Hz〕

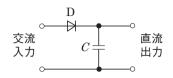
 f_L :局部発振周波数 [Hz]

■ 雑音電力P_N〔W〕

 $P_{\rm N} = k T B$

k: ボルツマン定数 [J/K]

T: 絶対温度 [K]


B: 周波数帯域幅〔Hz〕

電源

 \blacksquare ダイオードに加わる逆電圧 $V_{
m D}$ (
m V)

$$V_{\mathrm{D}} = 2\sqrt{2} \times V_{\mathrm{e}}$$

Ve: ダイオードに加える交流電圧の実効値 [V]

--> **変圧器の効率** η 〔%〕

$$\eta = \frac{P_2}{P_1}$$

P1: 一次側の電力 (W)

P2: 二次側の電力 (W)

■ 整流回路の直流出力(平均値)電圧V_a(V)

単相半波整流回路

$$V_{\rm a} = \frac{1}{\pi} V_{\rm m}$$

単相全波整流回路

$$V_{\rm a} = \frac{2}{\pi} V_{\rm m}$$

V_m:整流出力(脈流)電圧の最大値[V]

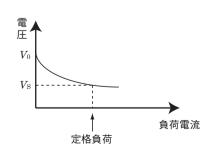
ガンマ

■ 整流回路のリプル率 (%)

$$\gamma = \frac{V_{\rm e}}{V_{\rm a}} \times 100$$

 $V_{\rm e}$: リプル電圧の実効値〔V〕

Va: 出力の平均電圧 [V]


デルタ

■ 電源の電圧変動率 δ [%]

$$\delta = \frac{V_0 - V_{\rm S}}{V_{\rm S}} \times 100$$

V₀:無負荷時の出力電圧 [V]

Vs: 定格負荷時の出力電圧〔V〕

アンテナ・電波の伝わり方

■ アンテナ(空中線)の利得

供試アンテナまたは基準アンテナに異なる 電力を加えて、同一場所におけるそれぞれ の電界強度を同じにした場合

$$G_{\rm dB} = 10\log_{10}\frac{P_0}{P}$$

GdB: アンテナの利得〔d B〕

P: 供試アンテナに加える電力 [W]

P₀: 基準アンテナに加える電力 [W]

供試アンテナまたは基準アンテナに同一の 電力を加えて、同一場所におけるそれぞれ の電界強度を比較した場合

$$G_{\rm dB} = 20\log_{10}\frac{E}{E_0}$$

*G*_{dB}: アンテナの利得 [dB]

E: 供試アンテナの電界強度 [V/m] E_0 : 基準アンテナの電界強度 [V/m]

■ アンテナの固有周波数 f (Hz)

$$f = \frac{1}{2\pi\sqrt{LC}}$$

L: アンテナの実効インダクタンス [H]

C:アンテナの実効キャパシタンス [F]

ラムダ

 $lacksymbol{\blacksquare}$ 電波の波長 λ 〔m〕と周波数f〔Hz〕の関係

$$\lambda = \frac{3 \times 10^8}{f}$$

周波数fの単位をMHzとすれば、

$$\lambda = \frac{300}{f(MHz)}$$

■ 接地形アンテナの長さと共振する電波の波長の関係

$$\ell = (2n-1) \times \frac{\lambda}{4}$$

λ:共振する電波の波長 [m]

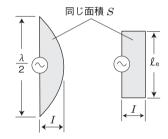
 $n:1,2,3\cdots$

■ 非接地形アンテナの長さと共振する電波の波長の関係

$$\ell = \frac{n}{2} \lambda$$

(: 非接地アンテナの長さ [m]

λ:共振する電波の波長 [m]


n:1,2,3...

■ 1/4波長接地アンテナの実効高h_e〔m〕

$$h_{\rm e} = \frac{\lambda}{2 \pi}$$

■ 半波長ダイポールアンテナの実効長 ℓe [m]

$$\ell_{\rm e} = \frac{\lambda}{\pi}$$

■ 円形枠形アンテナの実効高h_e (m)

$$h_{\rm e} = \frac{2 \pi A N}{\lambda}$$

A:円形の面積 $[m^2]$

N: 巻数 [回]

λ:波長 [m]

■ アンテナの放射電力*P*〔 W 〕

$$P = I_a^2 R_r$$

*I*a:アンテナ電流 [A]

 R_r :放射抵抗〔 Ω 〕

ー/-∞ ■ アンテナの放射効率 η

$$\eta = \frac{P_{\rm r}}{P}$$

 $P_{\rm r}$:アンテナから放射される電力 [W]

P:アンテナに供給される電力 [W]

■ アンテナ電力Pをn倍したときの電界強度E (V/m)

$$E = E_0 \sqrt{n}$$

 E_0 :アンテナ電力がPのときの電界強度 [V/m]

■ 受信アンテナの誘起電圧V(V)

 $V = E h_{\rm e}$

E:電界強度 [V/m]

h_e:アンテナの実効長[m]

■ 1/4波長垂直アンテナの電界強度E(V/m)

$$E = \frac{9.9\sqrt{P}}{d}$$

P: アンテナの放射電力 [W]

d:アンテナからの距離 [m]

■ 相対利得 G_D のアンテナの電界強度E (V/m)

$$E = \frac{7\sqrt{G_{\rm D}P}}{d}$$

G_D: アンテナの相対利得〔倍〕

P:アンテナの放射電力 [W]

d:アンテナからの距離 [m]

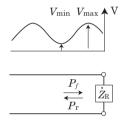
■ アンテナに供給される電力P (W)

$$P = P_f - P_r$$

 P_f : 進行波電力〔W〕 P_r : 反射波電力〔W〕

■ 定在波比(SWR)S

$$S = \frac{\sqrt{P_f} + \sqrt{P_r}}{\sqrt{P_f} - \sqrt{P_r}}$$


$$S = \frac{V_{\text{max}}}{V_{\text{min}}}$$

$$S = \frac{1 + |\Gamma|}{1 - |\Gamma|} = \frac{1 + \sqrt{\frac{P_{\rm r}}{P_f}}}{1 - \sqrt{\frac{P_{\rm r}}{P_f}}}$$

V_{max}:給電線上の電圧最大点の電圧〔V〕

Vmin: 給電線上の電圧最小点の電圧 [V]

 Γ : 電圧反射係数

■ 給電線の特性インピーダンスZ₀〔Ω〕

$$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$

R: 給電線1m当たりの抵抗〔 Ω 〕

C:給電線1m当たりの静電容量〔F〕

L:給電線1m当たりのインダクタンス〔H〕

G: 給電線1m当たりのコンダクタンス [S]

\blacksquare 平行二線式給電線の特性インピーダンス Z_0 [Ω]

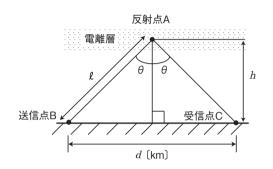
$$Z_0 = 277 \log_{10} \frac{2D}{d}$$

d:給電線の導線の直径 [mm]

D:二線間の距離 [mm]

D: 導線の中心間隔 [mm] d: 導線の直径 [mm]

■ 電離層で反射される最高使用可能周波数(MUF) $f_{ m M}$ 〔MHz〕(セカント法則) $f_{ m M}$ = $f_{ m C}$ sec heta


fc:電離層の臨界周波数〔MHz〕

θ:電波の電離層への入射角〔度〕

$$f_{\rm M} = f_{\rm C} \frac{\ell}{h} = f_{\rm C} \sqrt{1 + \left(\frac{d}{2h}\right)^2}$$

d:送受信地点間の距離〔k m〕

h:電離層の見かけの高さ [km]

■ 平面大地上の電界強度E (V/m)

 $d \gg h_1$ 、 $d \gg h_2$ の条件では、

$$E = E_0 \frac{4 \pi h_1 h_2}{\lambda d}$$

$$= \frac{88 h_1 h_2 \sqrt{G_D P}}{\lambda d^2}$$

E:直接波と反射波の合成電界強度 [V/m]

 E_0 :直接波の電界強度 [V/m]

d:送受信点間の距離 [m]

 h_1, h_2 : 送信、受信アンテナの地上高 [m]

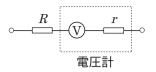
GD: 相対利得(真数)

P: 放射電力〔W〕

■ VHF帯の周波数の電波の見通し距離d〔km〕

$$d=4.12 (\sqrt{h_1} + \sqrt{h_2})$$

 h_1, h_2 : 送信、受信アンテナの地上高 [m]

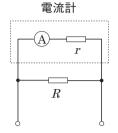

測定

■ 電圧計の倍率器R〔Ω〕

$$R = (N-1) r$$

N:測定倍率

r:電圧計の内部抵抗〔 Ω 〕



■ 電流計の分流器*R*〔Ω〕

$$R = \frac{r}{N-1}$$

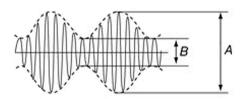
N:測定倍率

r:電流計の内部抵抗〔 Ω 〕

■ 振幅変調波の変調率*M*〔%〕

$$M = \frac{b}{a} \times 100$$

a:搬送波の振幅の最大値 [V]


b:信号波の振幅の最大値 [V]

出力の波形から求める場合

$$M = \frac{A - B}{A + B} \times 100$$

A:振幅変調波の最大値

B:振幅変調波の最小値

■ 測定の誤差率S [%]

$$S = \frac{M - T}{T} \times 100$$

M: 測定値

T: 真值

■ 正弦波交流電圧の実効値V_e(V)

$$V_{\rm e} = \frac{V_{\rm m}}{\sqrt{2}}$$

Vm: 正弦波交流電圧の最大値〔V〕

数学の公式集及び数値

■ 指数の計算

$$X^{\mathrm{m}} \times X^{\mathrm{n}} = X^{\mathrm{m+n}}$$

$$X^{\mathrm{m}} \div X^{\mathrm{n}} = \frac{X^{\mathrm{m}}}{X^{\mathrm{n}}} = X^{\mathrm{m-n}}$$

$$\frac{1}{X^{n}} = X^{-n}$$

$$X^0 = 1$$

■ √とπの数値

X	1	2	3	5	4	16	10	100
\sqrt{X}	1	1.41	1.73	2.24	2	4	3.16	10

$$\pi = 3.14$$

$$\frac{1}{\pi} = 0.318$$

$$\frac{1}{2\pi} = 0.159$$

$$\frac{1}{\sqrt{2}} = 0.707$$

log

$$\log_{10} (a \times b) = \log_{10} a + \log_{10} b$$

$$\log_{10} a^b = b \times \log_{10} a$$

$$\log_{10} \frac{a}{b} = \log_{10} a - \log_{10} b$$

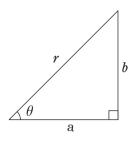
X	1/2	1	2	3	4	5	10	20	100
$\log_{10}X$	-0.301	0	0.301	0.477	0.602	0.699	1	1.301	2

■ デシベル

電圧比のデシベル
$$A_{
m dB}$$
 = $20{
m log}_{10}A_{
m V}$ 〔 d B〕

電力比のデシベル
$$G_{
m dB}$$
= $10\log_{10}G$ 〔dB〕

比	1/2	1	2	3	4	5	10	20	100
電力	-3	0	3	4.8	6	7	10	13	20
電圧	-6	0	6	9.6	12	14	20	26	40


■ 三角関数

$$\sin\theta = \frac{b}{r}$$

$$\cos\theta = \frac{a}{r}$$

$$\tan \theta = \frac{b}{a}$$

$$\sec \theta = \frac{1}{\cos \theta} = \frac{r}{a}$$

■ 複素数

$$j = \sqrt{-1}$$

$$j^2 = j \times j = -1$$

$$\frac{1}{j} = \frac{j}{j \times j} = \frac{j}{-1} = -j$$

$$\frac{1}{1+j} = \frac{1 \times (1-j)}{(1+j) \times (1-j)} = \frac{1-j}{1^2-j^2} = \frac{1-j}{1-(-1)} = \frac{1}{2} - j\frac{1}{2}$$

■ 単位の接頭語

名称	テラ	ギガ	メガ	牛口	センチ	ミリ	マイクロ	ピコ
記号	Т	G	M	k	c	m	μ	p
数值	1012	10 ⁹	10 ⁶	10 ³	10-2	10-3	10-6	10-12